
Galicia: an open platform for lattices

Petko Valtchev1, David Grosser1, Cyril Roume2, Mohamed Rouane Hacene1

1 DIRO, Université de Montréal, C.P. 6128, Succ. “Centre-Ville”,
Montréal, Québec, Canada, H3C 3J7

2 LIRMM, CNRS et Université Montpellier 2, 161 rue Ada
34392 Montpellier, Cedex 5, France

Abstract. Formal concept analysis (FCA) has proved helpful in the
resolution of practical problems from fields such software engineering,
knowledge engineering and data mining. Recently, a substantial push
has been done toward the design of efficient procedures for lattice con-
struction, with a variety of novel algorithms proposed in the literature.
However, the FCA community has created only few effective tools for
manipulating lattices so far and what is still missing is an integrated envi-
ronment for constructing, visualizing, exploring and maintaining lattices.
We present the Galicia project aimed at the construction of an open plat-
form for lattice manipulation which follows the complete life-cycle of a
lattice. More than just a lattice tool, the platform provides the necessary
services for quick development and test of new lattice algorithms.

1 Introduction

Although Formal Concept Analysis (FCA) was initially intended as an alterna-
tive to the classical lattice theory [5], the discipline has largely outgrown this
narrow frame. In particular, practitioners from various fields, e.g., social sciences,
data analysis, software engineering, etc., have adopted the theoretical framework
of FCA and made of the corresponding algorithmic methods an effective tool for
the extraction of conceptual structure from raw data.

Nowadays, the FCA community has practical applications in, among others,
data mining, re-engineering of software and knowledge acquisition. The number
of practitioners that adhere to the concept lattice paradigm is steadily growing.
Meanwhile, following the recent explosion in the volume of information that
needs to be analyzed, the attention is increasingly drawn to the algorithmic
aspects of the discipline and to their software realization, with requirements for
scalability and flexibility. However, to our best knowledge, there is no software
tool that supports the (formal) analysis process along its entire span. Thus,
despite the large amount of source code produced and filed by the members of
the FCA community, reliable and free software is probably yet to come3, while
available commercial tools cover only separate tasks, e.g., the visualization in
Toscana [12].

3 See the Tockit project at http://www.tockit.org.

For the above reasons, we claim that what is needed is an integrated envi-
ronment for the manipulation of lattices. In addition, the environment should
remain open source so that possible extensions could be easily designed. Yet
another problem is the lack of software support for the development of new
lattice-based tools. Our own experience has taught us that a system providing
basic services such as lattice visualization and navigation, could greatly speed-up
the process.

Motivated by the above observations, we initiated the Galicia project whose
main goal is to bridge the gap between theoretical advances in FCA and the level
of tool availability. Our approach took the shape of an open platform integrating
a collection of tools to support the entire life-cycle of a concept lattice (data
preprocessing, construction, visualization, navigation, maintenance, etc.). The
platform is intended for practitioners as it provides basic services necessary for
practical applications of FCA. In addition, Galicia offers to FCA researchers
advanced tools for performance studies, as well as an open environment for the
quick design of new lattice-related techniques.

The paper starts with a recall of classical FCA notions and of some newer
results relevant to the project (Section 2) together with a critical view on the
current availability of software tools in the domain. Next, the goals of the project
are presented, followed by a description of the data processing and analysis
services provided by the platform (Section 3). Particular emphasis is put on two
facets of the platform which are the most thoroughly realized up till now, its
visualization component (Section 4) and its open architecture (Section 5).

2 Background

In the following paragraphs, we recall key notions from FCA and summarize
algorithmic developments up to date. Also, our previous work is put in this
context.

2.1 Formal concept analysis basics

Formal concept analysis [5] (FCA) studies the partially ordered structure, known
under the names of Galois lattice [1] or concept lattice, which is induced by a
binary relation over a pair of sets O (objects) and A (attributes).

Definition 1 A formal context is a triple K = (O, A, I) where O and A are sets
and I is a binary (incidence) relation, i.e., I ⊆ O × A.

Within a context (see Figure 1 on the left), objects are denoted by numbers
and attributes by small letters. The way a lattice arises on top of a context
may be summarized as follows (see [5] for details). Two closure operators are
associated to a context (further denoted by ′′ as in X ′′), one for each dimension
of the table, leading to two families of closed sets. Moreover, each family of
closed sets is organized into a complete lattice by the set-theoretic inclusion,

whereas both lattices are anti-isomorphic, i.e., the underlying isomorphism is
an antitonic mapping. The pairs of closed sets in the isomorphism are called
(formal) concepts (where the object set is referred to as the extent and the
attribute set as the intent). The concepts correspond to the maximal rectangles
of the table which are made up of strictly positive entries (e.g., (167, bcd) is
a concept4, while (13, dh) is not). Finally, the concept or Galois lattice is the
overlapping structure made up of both lattices in which the inclusion on extents
prevails, i.e., a concept is greater than (is a super-concept of) another one iff its
extent is larger.

a b c d e f g h

1 X X X X X
2 X X
3 X X X X X
4 X
5 X X X
6 X X X X
7 X X X
8 X
9 X X X X X

#1

#2 #4 #5

#6 #8

#9

#12

#16

#11 #18

#17

#13

123456789

1349 1359

1679 139

167 19 39 35

1 9 3

c12679 d136789
#3

g h

ac26 dgh fh359

bcd cdgh dfgh efh

abcd6
#10

bcdgh cdfgh defgh

abcdefgh

cd

#7

#14 #15

Fig. 1. Left: Binary table K = (O = {1, 2, ..., 9}, A = {a, b, ..., h}, R). Right: The
Hasse diagram of the lattice of K.

The Hasse diagram of the lattice L drawn from K = ({1, 2, ..., 8}, A, R) is
shown on the right-hand side of Figure 1 where intents and extents are drawn
on both sides of a node representing a concept. It is noteworthy that contexts
and their lattices constitute alternative representations of the same reality 5.

Relevant FCA constructs include composition/decomposition operations for
contexts and the corresponding operations on lattices. Among those, the splits
of a context on its object/attribute set and the reverse “join” operations called
subposition/apposition, respectively, are worth mentioning. The equivalent lat-
tice operations, the semi-products, underly an important visualization technique
for lattices (see below) and may even have significant computational benefits.

Besides the complete lattice, two other structures, derived from the lattice,
have acquired a large popularity among FCA practitioners: the iceberg lattices
and the Galois sub-hierarchy (GSH). Iceberg lattices are maximal upper sets
(or order filters) of a lattice, which means they are generated by maximal anti-
chains of the lattice. Intuitively, an iceberg arises through a complete horizontal

4 A separator-free form for sets is used, e.g., 127 stands for {1, 2, 7}
5 The third representation mode, the one made up of attribute implications [6] will

not be discussed here.

cut of the lattice into two parts, lower one and upper one. The upper one, called
the iceberg lattice, includes general concepts while excluding the overtly specific
ones. Extent cardinality restrictions account for the most popular cut criteria
for icebergs, although other factors could also match. For example, the iceberg
of the lattice in Figure 1, obtained by a cut factor |Extent(c)| ≥ 3 is shown in
Figure 2, on the left.

#1

#2 #5

123456789

1359

139

167

c12679 h

dgh

1349 g
#4

cd1679

d
#3

136789

bcd
#7

#14

359 fh
#15#8

#2 #4
1349

35

1

359

bcdgh defgh

c12679
#3

136789 d

#11 #18

bcd
#7

167

ac

#10

26
#6

abcd6 cdfgh9

#5
1359 hg

fh
#15

#9
efh

#12
3

Fig. 2. Left: The iceberg of the lattice in Figure 1, obtained by a cut factor
|Extent(c)| ≥ 3. Right: The GSH of the context from Figure 1.

Works on FCA applications to software engineering (SE) problems such as
hierarchy optimization in object-oriented systems [6, 4] have underlined the im-
portance of another sub-structure of the complete lattice, GSH. The latter rep-
resents the restriction of the lattice order to the set of all object concepts and
attribute concepts, i.e., concepts that are minimal (maximal) among those whose
extent (intent) includes a given object (attribute). As an illustration, Figure 2,
on the right, shows the GSH of the context from Figure 1.

Recent work within the SE domain, namely on the re-engineering of analysis-
level models of software described as UML class diagrams, has brought to the
forth the need for a richer description formalism to accommodate the links that
may exist among objects in a context (e.g., the associations among classes in
UML). As a straightforward approach to the problem, the notion of Relational
context family (RCF) has been proposed (see [7] for formal definitions and first
results). A RCF is a family of contexts to which a set of higher-order binary re-
lations has been added. The binary relations describe links between objects from
two (possibly identical) contexts of the family. For example, a relation r binding
the above context K to itself could be r = {(1, 6), (2, 3), (2, 8), (4, 7), (5, 6)}. The
links behind the relations are invariably present in a realistic domain model,
e.g., kinships, spatial relations, “part-of” relations, etc. Often, they convey valu-
able information that may determine the way objects are grouped into (domain)
concepts.

2.2 Construction of lattices and substructures

Lattice construction from contexts has been a challenge since the very early
days of FCA. The problem is a hard one since in the worst-case, there can be

exponentially many concepts. However, in practical cases, only a small number
of concepts do occur, so it makes sense to look for methods that discover and, if
necessary, hierarchically organize them, in an efficient manner. There is nowadays
a large variety of algorithms dedicated to the computation of either the set of
all concepts or the entire lattice, i.e., concepts plus order6.

A major distinction among these algorithms lays in the way they acquire
input data. According to a classical dichotomy, batch algorithms consider all the
data to be completely known beforehand. In contrast, on-line algorithms allow
small changes in the data to be propagated to the final result, i.e., the concept
lattice, without starting from scratch. Thus, they can be used to simulate batch
lattice construction by a sequence of object/attribute additions to an initially
void context (also called incremental construction). Recently, we have suggested
a novel paradigm for lattice construction that generalizes the increments to sets
of attributes/objects [11]. Based on apposition/subposition and semi-products,
we defined a binary operation on complete lattices, called Assembly and further
extended it to a first-class lattice construction procedure that implements a
“divide and conquer” strategy.

Besides complete lattices, the lattice substructures mentioned in the previous
paragraph have also been the target of algorithmic work. Thus, specific tech-
niques have been designed to cope with these structures directly and therefore
at lower cost. Concerning GSH, a set of efficient algorithm has been proposed in
the literature, both batch and incremental, starting with the work of Godin [6].
Icebergs remain closer to lattices and therefore few algorithms have been ex-
plicitly designed to construct them. Dedicated methods for icebergs include the
recent work on the Titanic [9] method.

2.3 Lattice visualization

An assistance to the examination of complex lattices, that may even arise from
small-size context, has been traditionally provided through visualization. As lat-
tices are usually represented through their Hasse diagrams which are basically
directed acyclic graphs, their drawing meets the same difficulties and suffers
on the same limitations as general graph drawing. Thus, it is quite a challenge
to represent a lattice of more than, say, 50 concepts in a readable way at a
normally-sized computer screen.

To deal with the “curse” of the lattice size, the research in FCA has yielded
an original method for visualizing complex concept lattices (see [5]). Thus, the
lattice corresponding to a context is drawn as embedded in a nested structure
made up of two or more smaller lattices. The method relies on two dual opera-
tors for assembling contexts called subposition and apposition respectively. Both
operations may be thought as the reverse of a horizontal, respectively vertical,
split of a context into two fragment contexts. Just as the initial context can be
retrieved by joining both fragments, the lattice of the global context can be ob-
tained by assembling the lattices of the fragments. Prior to our work on lattice

6 An algorithmic is beyond the scope here, hence the reader is referred to [8].

assembly [11], context fragmentation has only supported lattice visualization:
the direct product of the fragment lattices is used as a multi-level framework
within which the nodes belonging to the global lattice are highlighted. The re-
sulting method, called nested line diagrams (NLD), as each level may be drawn
as embedded in the upper levels, not only enables the visualization and the in-
teractive exploration of complex lattices, but also provides for a multi-viewpoint
presentation of the analysis results.

The Toscana [12] system has been designed to support exploration of com-
plex lattice through navigation of NLD. The system offers valuable services such
as single and multi-scale diagram drawing, navigation, etc.

2.4 Actual needs in the domain

The last decade has seen a significant increase in the number of the FCA com-
munity members (about 1 200 hits for the query “FCA + lattice” via Google).
On the one hand, more practitioners get interested in applying the FCA theoret-
ical achievements, which supposes the appropriate software tools are available.
On the other hand, more researchers get involved in studies of the theoretical
and/or algorithmic aspects of FCA, in which tool development is often required.
As a result, a large quantity of source code dedicated to a particular FCA-related
task has been or is being currently developed or maintained. Due to the specific
features of the discipline, mainly because of its young age, most of the time the
produced code is neither reused nor reusable. This leads to a situation in which
newcomers in the community desperately look for some available source code to
help them build their own specific tools.

Under these circumstances, we see an urgent need for a generic software
solution for the following frequently reoccurring problems: lattice construction,
visualization, maintenance and navigation. Such a solution could save effort for
a large part of the community, on the one hand, and enforce a certain degree
of cohesion among the researchers by facilitating data and results exchange, on
the other hand. In addition, the development of new applications could largely
benefit from the availability of adaptable code, which in turn will increase the
external visibility of the entire FCA paradigm.

To fulfill the above general requirements, a system should exhibit specific
software qualities, in particular high adaptability and extensibility. Adaptability
is necessary in order for the system to fit various situations and problem settings.
Extensibility follows adaptability as it takes further effort on the appropriate
design and implementation of the system, so that it could easily integrate new
features. Extensibility is highly desirable for a tool which is intended to support
research on a young and dynamically developing discipline such as FCA.

It is noteworthy that the first answers to the above questions are getting on
track. On the one hand, the Tockit project concentrates the work on a large-
scale software framework for FCA-related tasks. On the other hand, first multi-
functional tools for basic FCA are getting available7.

7 See for example the ConExp tool at http://www.sf.net/projects/conexp/.

As neither of the above approaches fits our own goals and schedule, we have
launched our own software project, called Galicia. The project is aimed at
the development of a fully integrated platform, i.e., a complete set of tools for
manipulating contexts and lattices, built on top of a common kernel providing
basic services (I/O, low-level data processing, etc.), and sharing a user-friendly
graphic interface. In addition, a key feature of the target platform is the open
architecture that supports adaptive maintenance and future extensions.

3 Galicia

Galicia is intended as an integrated software platform including components for
the key operations on lattices that might be required in practical applications
or in more theoretically-oriented studies. Thus, the basic configuration of the
platform performs major functions such as context input, lattice construction
and visualization.

3.1 Goals and scope of Galicia project

The platform started as an ordinary lattice tool to support our research on
applications of FCA to data mining and software engineering. Initially, the vol-
ume of the data and its complex structure were the major stakes, which put
the emphasis on expressive power and efficiency of the tool whose configuration
was limited to lattice computation and exploration. In addition, to support the
exploratory analysis mode, the specifications were extended to cover major as-
pects of lattice maintenance upon data evolution (e.g., add/remove of elements
of the context). Later on, as computational efficiency and intelligibility brought
some coarse-grain lattice operations to the forth, algorithms to carry out those
operations have been added as well.

The quick evolution of the tool requirements persuaded us to move to a more
open architecture, with an emphasis on extensibility both on data representation
and on lattice manipulation levels. Moreover, the absence of equivalent tools in
the FCA community became a major motivation for us to make our platform
available for the entire community, a fact that further emphasized the need for
generic implementations that adapt easily to various circumstances and anal-
ysis goals. To sum up, Galicia is designed to cover the whole range of basic
tasks that make up the complete life-cycle of a lattice as we understand it (see
Figure 3).

The intended impact of the platform is two-fold since it should support both
applications of FCA and development of new lattice-based techniques. As a FCA-
tool, Galicia offers an open architecture and generic implementations which
ease its adaptation to a particular application domain and problem settings.
For example, a wide range of data formats (context types) are allowed in the
platform. Beside classical binary contexts, multi-valued contexts are admitted
in the design as well as more complex data descriptions (e.g., the previously
mentioned relational context families). In addition, a rich set of algorithmic

Fig. 3. Life-cycle of a lattice: contexts are either loaded or created by means of con-
text editor; lattices are constructed and visualized; rearrangements of the context are
performed to clarify the lattice structure; the resulting lattice is reduced to a suborder
or decomposed into smaller lattices.

methods for lattice construction and maintenance is included in the system’s
architecture.

Finally, the platform offers several visualization mechanisms including 2D
and 3D graph drawing modes and should soon provide a nested-line-diagram
mode.

3.2 Context manipulation

Galicia admits both classical, i.e., binary, and multi-valued contexts to be pro-
cessed. In addition, relational context families (RCF) can be manipulated within
the platform. Basic context manipulations include input/output to a disk file,
interactive editing, split into fragments (subcontexts), etc. A context can be
modified by changing the composition of its object/attribute sets or the set of
pairs in the incidence relation (’X’ in the binary table). The edition of a RCF ad-
mits modifications in the relation ri as well (see Figure 4). Several data formats
are available in Galicia such as IBM formats for transaction databases, propri-
etary human-readable formats for contexts and lattices, etc. Other formats are
currently examined in order to insure the inter-operability with existing tools
(e.g., in application domains).

3.3 Lattice construction and maintenance

The lattice manipulation functions of Galicia cover many of the classical al-
gorithms for lattice construction as well as a large set of recent lattice-related
techniques which have been designed by members of our team.

Fig. 4. Loading data dialog box with context family editor.

The platform features a set of lattice construction algorithms. In fact, as
different algorithm performances may vary depending on type of the context,
we consider that it is crucial for applications where efficiency is critical, to offer
the tool user a choice among the most powerful techniques. In addition, the
availability of several competing algorithms eases the development and test of
new ones, in particular, the comparison of practical performances. A special
emphasis has been put on incremental construction with Galicia featuring both
the initial algorithm of Godin et al. and our recent generalization [10]. Moreover,
a lattice construction following a divide-and-conquer approach (based on lattice
assembly) is included in the platform design.

The platform offers a set of iceberg construction techniques as well, includ-
ing an implementation of Titanic. Incremental construction is performed by
our Magalice algorithm. Similarly, several modes and techniques for GSH con-
struction are included in the platform design. In the batch mode, the available
construction services rely on an implementation of the algorithm Ceres, whereas
the incremental mode features Ares and the method of Godin and Mili [6].

Being able to provide efficient support for data evolutions is of high im-
portance for FCA tools intended for exploratory tasks. As an approach to the
problem, we specified a complete set of context modifications (add and remove
of lines/columns/X’s in the table) together with the corresponding operations
that propagate efficiently these modifications to the lattice. Implementations of
these operations support the interactive lattice construction mode of Galicia

in which the user gradually refines his/her view on which parts of the data are
worth analyzing. Moreover, the same operations applies to iceberg lattices and
GSH.

The platform design provides support for higher-level operations on lattices
such as assembly and split of lattices. These can be seen as the add/remove
of several lines or columns at a time and therefore generalize the classical on-
line algorithms. Instead of a one-element-at-a-time strategy, assembly and split
consider the initial and the modified contexts, as well as the context made up of
the elements in the difference, together with their corresponding lattices. In the

case of assembly, the final lattice is directly obtained as the semi-product of the
initial lattice and the lattice drawn from the difference [11].

One of the most original features of Galicia is the support for multiple
lattice construction on top of a RCF. To that end, we have designed the Multi-

FCA procedure [7]. Two variants of Multi-FCA have been devised: one for
complete lattices and another one for GSH. The former is intended as a tool for
our theoretical investigations whereas the latter supports a concrete application
in the software re-engineering area.

4 Visualization

Drawings of concept lattices provide the most common mechanism for the com-
munication of FCA results [3]. Layered diagrams constitute a common graph
drawing approach to the layout of a partially ordered sets. Within such a dia-
gram, each vertex is assigned to a horizontal layer while the vertices of a layer
are ordered to reduce edge crossings. Ordering relies on various heuristics since
the general crossing minimization problem is known to be NP-complete [2].

Fig. 5. Layered diagram of a concept lattice and layout parameters.

Galicia provides two layout methods, an automated one and an interactive
one. The former method relies on local optimization heuristics: the edge crossings
are minimized layer-wise, with a top-down traversal of the layer set. The second
one follows a strong analogy with the magnetism phenomena since vertices and

even edges are assigned attraction and repulsion forces8. Thus, layout elements
sustain each other’s impact which tends to push each of them to a specific part
of the drawing. The key idea is to reach a global layout as a convergence point
of minimal energy for the entire set of elements.

The platform provides a user-friendly interface for concept lattice layout.
The layout console shown in Figure 5 contains the main graph drawing tools.
Thus, zooming in/out and reduced view of the entire diagram enable the navi-
gation through complex lattices. Moreover, the parameters that tune the layout
methods are included: switches for second-order heuristics, various force degrees,
rotation speed and direction for the 3D mode, etc.

Diagrams can be displayed in 2D or 3D modes (see Figure 6) regardless of the
layout method. In the 3D mode, the lattice model is a mapping of each vertex
on a 3D sphere.

Fig. 6. a) 2D-force-layered. b) 3D-spherical layout. c) 3D-force-layout. d) 3D-spherical
layout, top view.

5 Design and implementation of the platform

Galicia has been designed as an open platform of independent components.

5.1 Architecture

System architecture reflects the push towards adaptability, extensibility and
reusability. In fact, a traditional layered architecture has been used, with the
lower most and upper most level composed by the Java environment and user
interaction services, respectively (see Figure 7). The remaining layers represent
the platform kernel and the tool set. The kernel is in charge of all low-level
services related to the representation and manipulation of contexts and ordered
structures. These services are exported toward the tool layer where the imple-
mentations of high-level FCA methods lay.

8 See also Freeze’s LatDraw (www.math.hawaii.edu/∼ralph/LatDraw).

Fig. 7. Architectural layers of the Galicia platform and dependencies between com-
ponents.

The architecture of the second highest layer of Galicia (see Figure 7) fol-
lows the partition of the platform functions into life-cycle phases. Thus, the
Import/Export engine (I/O) insures the input/output flow of data and results
whereas the Context editor offers the necessary environment for interactive cre-
ation and/or modification of contexts and RCF. The Structure extractor com-
ponent is responsible for the construction and/or maintenance of lattices and
posets. It contains a set of concrete methods which are further organized into
subcomponents (see Figure 8) with respect to the kind of structure manipulation
they perform. For example, the Constructor subcomponent provides services of
pure construction from data, either batch or incremental. Methods for assembly

Fig. 8. The architecture of the structure extracting component of Galicia.

and decomposition of lattices are located in Assembler/Slicer while the Updater
is responsible for maintaining incrementally posets when attributes, objects or
(object, attribute) pairs are added/removed. Finally, the Lattice viewer features

poset visualization and browsing. Two modes for lattice representation are avail-
able, 2D and 3D, while for complex lattices, a nested line diagram engine (still
in progress) enables gradual exploration through navigation.

To sum up, the architecture of Galicia favors the integration among tools
since these tools use the same kernel services while interacting with the user via
a uniform interface.

5.2 Detailed design and implementation

The modular architecture of Galicia facilitates modifications, both in the set
of available algorithmic methods, i.e., in the tool layer, and in the specific data
structures used in the kernel. First, extensive use of abstract data types (for
posets, contexts, context elements, etc.) results in generic services whose imple-
mentation can be easily modified. Consequently, dependency of client tools on
implementation decisions is reduced while easing the integration of alternative
tools for the same task (e.g., favoring different aspects such as efficiency versus
low memory consumption).

In its current version9, the platform provides full support for the minimal
set of FCA tasks, i.e., input data processing (import/export and editing), lattice
construction (two incremental algorithms) and visualization (2D and 3D modes).
Moreover, the Multi-FCA method is already available in its GSH-based variant.
Implementation of further construction algorithms (both batch and incremental)
as well as more complex manipulations such as NLD visualization and assem-
bly/split of lattices, are still under design. More research-oriented features, e.g.,
a test generator for comparative performance studies, are also being examined.

6 Discussion

Galicia is an open platform that provides support for the entire life-cycle of a
lattice. It offers basic services (I/O for various data types, representation and
manipulation of contexts and structures, etc.), a collection of various algorithms
for the construction of lattices and related order structures, and a powerful
diagram visualization tool that works both in 2D and in 3D modes.

Besides being a tool for FCA practitioners, Galicia fits perfectly to scientific
studies in which both theoretical and algorithmic aspects are investigated. First,
a minimal framework which is necessary for routine performance studies on
competing techniques is already available within the platform. The framework
can be easily extended to suit more sophisticated problem settings. Moreover,
Galicia’s modular architecture and generic code allows new and complex data
types to be integrated to the platform with a reasonable effort while reusing most
of the low-level services. As an illustration of this feature, we integrated into
Galicia the processing of relational context families which represent relations
in the data in a way inspired by UML.

9 Latest public releases of Galicia available at
www.iro.umontreal.ca/∼valtchev/galicia/.

Acknowledgements

The authors want to thank to anonymous referees who helped improve the paper,
as well as to the senior members of the Galicia team, especially to Robert Godin
and Rokia Missaoui.

References

[1] M. Barbut and B. Monjardet. Ordre et Classification: Algèbre et combinatoire.
Hachette, 1970.

[2] G. Battista, P. Eades, R. Tamassia, and I. Tollis. Graph dawing: Algorithms for
the visualisation of graphs. Prentice Hall, 1999.

[3] R. Cole. Automated layout of concept lattices using layered diagrams and additive
diagrams. In Australasian Computer Science Conference (ASC’01), pages 47–60,
Queensland, Australia, 2001.

[4] H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class insertion
with overloading. In Proceedings of OOPSLA’96, San Jose (CA), USA, special
issue of ACM SIGPLAN Notices, 31(10), pages 251–267, 1996.

[5] B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundations.
Springer-Verlag, 1999.

[6] R. Godin and H. Mili. Building and maintaining analysis-level class hierarchies
using Galois lattices. In Proceedings of OOPSLA’93, Washington (DC), USA,
special issue of ACM SIGPLAN Notices, 28(10), pages 394–410, 1993.

[7] M. Huchard, C. Roume, and P. Valtchev. When concepts point at other concepts:
the case of uml diagram reconstruction. In Proceedings of the 2nd Workshop
on Advances in Formal Concept Analysis for Knowledge Discovery in Databases
(FCAKDD), pages 32–43, 2002.

[8] S. Kuznetsov and S. Ob’edkov. Algorithms for the Construction of the Set of
All Concept and Their Line Diagram. preprint MATH-AL-05-2000, Technische
Universität, Dresden, June 2000.

[9] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Computing Iceberg
Concept Lattices with Titanic. Data and Knowledge Engineering, 42(2):189–222,
2002.

[10] P. Valtchev and R. Missaoui. Building concept (Galois) lattices from parts: gener-
alizing the incremental methods. In H. Delugach and G. Stumme, editors, Proceed-
ings, ICCS-01, volume 2120 of Lecture Notes in Computer Science, pages 290–303,
Stanford (CA), USA, 2001. Springer-Verlag.

[11] P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards
building Galois (concept) lattices. Discrete Mathematics, 256(3):801–829, 2002.

[12] F. Vogt and R. Wille. TOSCANA – a graphical tool for analyzing and exploring
data. In R. Tamassia and I. G. Tollis, editors, Graph Drawing, volume 894 of
Lecture Notes in Computer Science, pages 226–233. Springer-Verlag, 1994.

